

WorldMEDSchool GLOBAL EDUCATION

Bacteriology of Tuberculosis

Christopher Gilpin PhD MPH Laboratories, Diagnostics and Drug Resistance Unit Global TB Programme Geneva, Switzerland

Outline

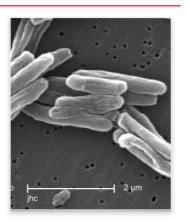
- 1. Mycobacterium tuberculosis complex
- 2. Classification of mycobacteria within the genus
- 3. Bacteriological characteristics of tuberculosis
- 4. TB Diagnostic tools

WorldMEDSchool

Mycobacterium tuberculosis Complex (MTBC)

Robert Koch identified the organism of the MTBC

- Mycobacterium tuberculosis
- Mycobacterium bovis
- Mycobacterium bovis BCG
- Mycobacterium microti
- Mycobacterium africanum
- Acid-fast organisms
- Slow growing organisms
- Only one group in the Genus Mycobacteria
- Major public health implications

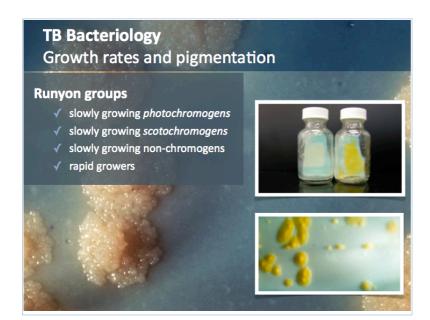

Genus Mycobacteria

Almost 100 different species

• 50 have potential for disease

Runyon classification system

- morphology
- · growth rate
- · pigmentation



WorldMEDSchool

Nontuberculous mycobacteria

Rapidly growing: < 7 days	Intermediately growing: 7-10 days	Slowly growing: > 7 days on agar
M.fortuitum complex	M.marinum – pigmented 30°C	M.avium complex
(M.fortuitum, M.peregrinum, M.fortuitum third biovariant complex, M.mucogenicum)	M.gordonae - pigmented 35°C	(M.avium, M.intracellulare, M.avium complex "xvar") M.kansasii, M.xenopi, M.simiae, M.szulgai, M.malmoense, M.terrae/
M.chelonae / abscessus group		M.nonchromogenicum complex, M.haemophilum, M.genavense
(M.chelonae, M.abscessus, M.immunogenum)		Others:
M.smegmatis – pigmented / nonpigmented		M.interjectum, M.confluentens, M.lentiflavum etc
Others pigmented:		
(M.phlei, M.aurum, M.flavescens, M.neoaurum, M.vaccae, M.thermoresistible)		

 $World {\color{red} \underline{\mathsf{MED}}} School$

TB Bacteriology

Clinical classification

Human pathogens

✓ M. tuberculosis, M. leprae, M. ulcerans

Animal pathogens

√ M. bovis, M. avium, M. marinum

Environmental mycobacteria

- free living in water or soil
- Classification is not strict
- M. tuberculosis infection is acquired primarily by person to person transmission
- Infections with non-tuberculous mycobacteria (NTM) are acquired from the environment and are not transmitted person to person

WorldMFDSchool

Tuberculosis transmission and disease (I)

- MTB an obligate pathogen, requires host to survive
- Inhalation into alveolar spaces, ingestion by macrophages
- Development or elimination of disease depends on microbiocidal activity
- Degenerated macrophages sensitize local lymphocytes and mobilise more macrophages.
- Dynamic turnover of engulfment and degeneration

WorldMEDSchool

Tuberculosis transmission and disease (II)

- Zone of lymphocytes and mononuclears surround centre of necrosis, development of capsule of fibrous connective tissue
- Extensiveness of disease due to virulence, route of infection, stage of infection, host factors

TB Bacteriology Oxygen dependence

- · TB bacilli require oxygen
- Prefer top of lung or cavities where air circulation is best for multiplication
- TB bacilli can survive in a metabolically inactive form or "dormant" in the host
- Dormant bacilli can reactivate to cause active disease after years or decades and especially with deterioration of the host immune system

WorldMEDSchool

Probability TB will be transmitted

- · Infectiousness of person with TB
- · Environment in which exposure occurred
- · Susceptibility of the host
- · Duration of exposure
- · Virulence of the organism

WorldMEDSchool

Disease progression

- · Only some individuals infected will develop active disease
- Approx. 10% of infected persons with normal immune systems develop TB at some point in life
- · HIV strongest risk factor for development of TB
- Risk of developing TB disease among persons with HIV is 7% -10% each year
- Certain medical conditions increase risk that TB infection will progress to TB disease

Conditions that increase the risk of progression to TB disease

- · HIV infection
- Substance abuse
- · Recent infection
- · Diabetes mellitus
- · Silicosis
- · Immunosuppression (corticosteroids and other drugs, malnutrition)

WorldMFDSchool

TB Bacteriology

Cellular characteristics

Cell wall composition

- layer of mycolic acid
- heat and phenol needed for the primary stain to penetrate the cell wall

Acid fast bacilli - AFB

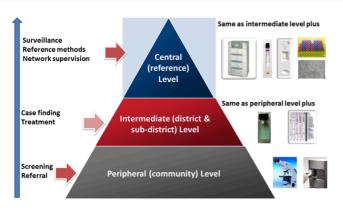
- all mycobacteria are AFB (i.e resistant to decolorization with acid or acid alcohol)
- lack of specificity
- resistance to chemicals inc.
 disinfectants acids, alkali, detergents

Long generation time

- chronicity of disease

WorldMEDSchool

TB Bacteriology


Resistance characteristics

Natural resistance to common antibiotics

- ✓ Inherent resistance to penicillins
- ✓ Intracellular bacteria are protected by the acid environment of macrophages
- ✓ Spontaneous mutations each million 100 million divisions
- √ High selection pressure once mutants occur especially for the key mycobactericidal drugs (rifampicin and isoniazid)
- ✓ Exposure to a single drug
 - poor adherence to treatment / inappropriate prescription
 - irregular drug supply / poor quality

WHO recommended diagnostics for use at different levels of laboratory sophistication

Available at: www.who.int/tb/dots/laboratory/policy/en WorldMEDSchool

Thank you!

gilpinc@who.int who.int/tb/laboratory/en