

Where are we with TB vaccine development?

Helen McShane The Jenner Institute **University of Oxford**

Epidemiology of human TB in 21st Century

- · 8.6 million new cases in 2012
- 1.3 million deaths in 2012
- Resistance:
 - MDR-TB
 - XDR-TB
 - TDR-TB

· Burden of latent infection

TB Control

- Active treatment
 - Need new drugs
- · Rapid and accurate diagnosis
 - Need better diagnostic tests
- · Prevention:
 - Need a more effective vaccine than BCG

BCG

- · Live attenuated M. bovis
- First used in 1921 (per os)
- · Efficacy:
 - Good
 - · Disseminated TB and TB meningitis
 - Leprosy
 - Bad
 - Lung disease at any age
 - Boosting (Rodrigues et al, Lancet 2005)

BCG Protective Efficacy – Meta analysis

- 70 trials; spanning 46 years
- Efficacy of 0% 80%
- Average reduction in incidence of 50%
- Latitude has major influence on efficacy

STAGE	POPULATION	PROTECTIVE EFFICACY % 0 70 40 60 70 80 10
CONTROLLED TRIALS	HARTI BETTISH SCHOOLCHLDREN N. AMERICAN INDAME CHICAGO REFAITS PURST'S RECOGN, POP, S. TOUGH-SHAFLANDE GOOGLA-ALARAMA S. TOUGH-SHAFLANDE N. TOUGH-	
CREENVATIONAL STUDIES	BANZL (SÃO PALACO ¹ RADA (GEUNO) RADA (GEUNO) THALAMO (BANGHORO) THAL	

Why doesn't BCG work?

- · Different strains of BCG
- Nutrition
- · Exposure to environmental mycobacteria
 - Masking (Black et al, 2002)
 - Blocking (Brandt et al, 2002)

What do we know about protective immunity

- · Essential:
 - CD4+ T cells
 - IFN y
 - TNF
- · Probably important:
 - CD8+ T cells
 - γδ T cells
 - CD-1 restricted T cells
 - IL-17
 - II-2
- · May be relevant
 - B cells and antibodies

Potential vaccine types

- · Whole organism
 - Improved BCG
 - Attenuated M.tb
- Subunit choice of vector and antigen
 - DNA
 - Protein/adjuvant
 - Recombinant virus/bacteria

Design of an improved vaccine against TB

- · Include BCG in new regime
- · Needs to induce cellular immune response
- · 3 possible strategies:
 - Enhance BCG with a subunit vaccine
 - · Protein + adjuvant
 - Viral vector
- · Replace BCG with improved BCG / attenuated M. tb
- · Enhance an improved BCG

Global TB Vaccine Pipeline

MVA85A

Modified vaccinia Ankara (MVA)

Poxvirus

No replication in mammalian tissues Good T cell boosting vector Excellent safety record

M.tb antigen 85A

Mycolyl transferase
Major target antigen
Protective in small animals
In all environmental mycobacteria
Doesn't interfere with new diagnostic tests

BCG - MVA85A regimen

Bibliography

Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial

Michele D Tameris*, Mark Hatherill*, Bernard S Landry, Thomas J Scriba, Margaret Ann Snowden, Stephen Lockhart, Jacqueline E Shea, J Bruce McClain, Gregory D Hussey, Willem A Hanekom, Hassan Mahomed†, Helen McShane†, and the MVA85A 020 Trial Study Team

www.thelancet.com Published online February 4, 2013 http://dx.doi.org/10.1016/ S0140-6736(13)60177-4

Enrollment 4754 inflarts consented 1967 roxidated 20 deaths 2 281 GPT* 281 SPT* 281 SPT* 283 HIV exposed 283 other Allocated to prisace (n=1398) 4 Riccated at both prisace (n=1398) 5 Riccated at inflare rendom (n=1299) 6 Riccated at inflare rendom (n=10) 7 Riccated at inflare rendom (n=1399) 7 Riccated at inflare rendom (n=10) 8 Riccated at inflare rendom (n=10) 9 Riccated at inflare rendom (n=10) 1 Riccated at inflare

Primary and secondary efficacy endpoints

Parameter	Placebo (n=1395)	MVA85A (n=1399)	Vaccine Efficacy % (95% CI)
Endpoint #1 (Primary Efficacy Endpoint)	39 (2·8)	32 (2-3)	17-3% (-31·9 to 48·2)
Endpoint #2 (Exploratory Efficacy Endpoint)	52 (3·7)	55 (3·9)	-6.9% (-56·1 to 26·9)
Endpoint #3 (Exploratory Efficacy Endpoint)	177 (12-7)	196 (14·0)	-12.1% (-37·4 to 8·5)

QFT conversion:

171

178

-3.8% (-28.1 to 15.9)

Tameris M et al, Lancet 2013

Summary

- Enormous progress has been made in the last decade
- · Challenges for the next decade are very clear
- · There is an urgent need for better models to evaluate vaccines
- · We should use every opportunity to identify potential correlates
- · We need to use human efficacy data to review and refine models
- · We need to design more potent vaccines
- · Currently no substitute for human efficacy testing

Where are we with TB vaccine

